lte网络架构图各接口(LTE架构图)
今天给各位分享lte网络架构图各接口的知识,其中也会对LTE架构图进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、lte系统的接口有哪些
- 2、LTE通信网络的网络结构是什么?
- 3、lteepc网络中哪些接口的控制平面使用
- 4、载波聚合的LTE
- 5、LTE 的网络结构中有哪些网元?作用是什么?
- 6、MAC的LTE中MAC层结构及功能
lte系统的接口有哪些
LTE(LongTermEvolution):3GPP长时间演进(LTE)项目是2006年以来3GPP启动的最大的新技术研发项目,这类以OFDM/FDMA为核心的技术可以被看做“准4G”技术。FDD-LTE系统空口上下行传输***取1对对称的频段接收和发送数据,而TDD-LTE系统上下行则使用相同的频段在不同的时隙上传输,相对FDD双工方式,TDD有着较高的频谱利用率。
LTE通信网络的网络结构是什么?
LTE网络特点
与传统3G网络比较,LTE的网络结更加简单扁平,降低组网成本,增加组网灵活性,主要特点表现在:
网络扁平化使得系统延时减少,从而改善用户体验,可开展更多业务;
网元数目减少,E-UTRAN只有一种节点网元E-Node B,使得网络部署更为简单,网络的维护更加容易;
取消了RNC的集中控制,避免单点故障,有利于提高网络稳定性;
LTE-扁平化接入网络架构
LTE的主要网元包括:
E-UTRAN(接入网):e-NodeB组成
EPC(核心网):MME,S-GW,P-GW
LTE的网络接口包括:
X2接口:e-NodeB之间的接口,支持数据和信令的直接传输
S1接口:连接e-NodeB与核心网EPC的接口
S1-MME:e-NodeB连接MME的控制面接口
S1-U: e-NodeB连接S-GW 的用户面接口
E-Node B
具有现3GPP Node B全部和RNC大部分功能,包括:
物理层功能
MAC、RLC、PDCP功能
RRC功能
***调度和无线***管理
无线接入控制
移动性管理
MME
NAS信令以及安全性功能
3GPP接入网络移动性导致的CN节点间信令
空闲模式下UE跟踪和可达性
漫游
鉴权
承载管理功能(包括专用承载的建立)
Serving GW
支持UE的移动性切换用户面数据的功能
E-UTRAN空闲模式下行分组数据缓存和寻呼支持
数据包路由和转发
上下行传输层数据包标记
PDN GW
基于用户的包过滤
合法监听
IP地址分配
上下行传输层数据包标记
DHCPv4和DHCPv6(client、relay、server)
lteepc网络中哪些接口的控制平面使用
lteepc网络中的PDCP、RRC、NAS、RLC和MAC子层接口的控制平面使用。根据相关公开资料显示,PDCP子层主要完成加密/完成性保护、传送控制平面数据等功能,RLC和MAC子层主要执行分段/级联、按序递交等功能,执行调度、SDU复用与解复用等功能,RRC,成广播、寻呼、RRC连接管理、RB控制、移动性功能和UE的测量报告和控制功能,NAS控制协议,主要完成EPS承载管理、鉴权、ECM-IDLE移动性处理、ECM-IDLE状态发起寻呼和安全控制等功能。
载波聚合的LTE
LTE(LongTermEvolution,长期演进),又称E-UTRA/E-UTRAN,和3GPP2UMB合称E3G(Evolved3G)
LTE是由3GPP(The3rdGenerationPartnershipProject,第三代合作伙伴***)组织制定的UMTS(UniversalMobileTelecommunicationsSystem,通用移动通信系统)技术标准的长期演进,于2004年12月在3GPP多伦多TSGRAN#26会议上正式立项并启动。LTE系统引入了OFDM(OrthogonalFrequencyDivisionMultiplexing,正交频分复用)和MIMO(Multi-InputMulti-Output,多输入多输出)等关键传输技术,显著增加了频谱效率和数据传输速率(20M带宽2X2MIMO在64QAM情况下,理论下行最大传输速率为201Mbps,除去信令开销后大概为140Mbps,但根据实际组网以及终端能力限制,一般认为下行峰值速率为100Mbps,上行为50Mbps),并支持多种带宽分配:1.4MHz,3MHz,5MHz,10MHz,15MHz和20MHz等,且支持全球主流2G/3G频段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显著提升。LTE系统网络架构更加扁平化简单化,减少了网络节点和系统复杂度,从而减小了系统时延,也降低了网络部署和维护成本。LTE系统支持与其他3GPP系统互操作。LTE系统有两种制式:FDD-LTE和TDD-LTE,即频分双工LTE系统和时分双工LTE系统,二者技术的主要区别在于空中接口的物理层上(像帧结构、时分设计、同步等)。FDD-LTE系统空口上下行传输***用一对对称的频段接收和发送数据,而TDD-LTE系统上下行则使用相同的频段在不同的时隙上传输,相对于FDD双工方式,TDD有着较高的频谱利用率。
LTE/EPC的网络架构如图2所示。
LTE***用由eNB构成的单层结构,这种结构有利于简化网络和减小延迟,实现低时延、低复杂度和低成本的要求。与3G接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的改变,逐步趋近于典型的IP宽带网络结构。
LTE的架构也叫E-UTRAN架构,如图3所示。E-UTRAN主要由eNB构成。同UTRAN网络相比,eNB不仅具有NodeB的功能,还能完成RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM等。eNodeB和eNodeB之间***用X2接口方式直接互连,eNB通过S1接口连接到EPC。具体地讲,eNB通过S1-MME连接到MME,通过S1-U连接到S-GW。S1接口支持MME/S-GW和eNB之间的多对多连接,即一个eNB可以和多个MME/S-GW连接,多个eNB也可以同时连接到同一个MME/S-GW。
LTE 的网络结构中有哪些网元?作用是什么?
LTE网络结构有以下网元:
1、eNodeB(简称为eNB)是LTE网络中的无线基站,也是LTE无线接入网的网元,负责空中接口相关的所有功能:
(1)无线链路维护功能,保持与终端间的无线链路,同时负责无线链路数据和IP数据之间的协议转换;
(2)无线***管理功能,包括无线链路的建立和释放、无线***的调度和分配等;
(3)部分移动性管理功能,包括配置终端进行测量、评估终端无线链路质量、决策终端在小区间的切换等。
2G/3G基站只负责了与终端无线链路的连接,而链路的具体维护工作(无线***管理、不经过核心网的移动性管理等)都是由基站的上一级管理实体(2G中是BSC、3G中的RNC)完成的,此外无线接入网与核心网的桥梁功能也是在BSC或RNC中实现的。
总之,eNB大致相当于2G中BTS与BSC的结合体,或3G中NodeB与RNC的结合体。
2、MME(Mobility Management Entity)是3GPP协议LTE接入网络的关键控制节点,它负责空闲模式的UE(User Equipment)的定位,传呼过程,包括中继,简单的说MME是负责信令处理部分。
它涉及到bearer激活/关闭过程,并且当一个UE初始化并且连接到时为这个UE选择一个SGW(Serving GateWay)。通过和HSS交互认证一个用户,为一个用户分配一个临时ID。MME同时支持在法律许可的范围内,进行拦截、监听。MME为2G/3G接入网络提供了控制函数接口,通过S3接口。为漫游UEs,面向HSS同样提供了S6a接口。
3、SGW(Serving GateWay,服务***)是移动通信网络EPC中的重要网元。
EPC网络实际上是原3G核心网PS域的演进版本,而SGW的功能和作用与原3G核心网SGSN网元的用户面相当,即在新的EPC网络中,控制面功能和媒体面功能分离更加彻底。
4、PGW(PDN GateWay,PDN***)是移动通信网络EPC中的重要网元。
EPC网络实际上是原3G核心网PS域的演进版本,而PGW也相当于是一个演进了的GGSN网元,其功能和作用与原GGSN网元相当。
扩展资料
随着技术的演进与发展,3GPP相继提出了TD-LTE,FDD-LTE等技术。
1、TD-LTE
TD-LTE是一种新一代宽带移动通信技术,是我国拥有自主知识产权的TD-SCDMA的后续演进技术,在继承了TDD优点的同时又引入了多天线MIMO与频分复用OFDM技术。相比于3G,TD-LTE在系统性能上有了跨越式提高,能够为用户提供更加丰富多彩的移动互联网业务。
2、FDD-LTE
FDD(频分双工)是该技术支援的两种双工模式之一,应用FDD式的LTE即为FDD-LTE。
由于无线技术的差异使用频段的不同以及各 个厂家的利益等因素,FDD-LTE的标准化与产业发展都领先于TDD-LTE。FDD模式的特点是在分离(上下行频率间隔190MHz)的两个对称频率信道上,系统进行接收和传送,用保证频段来分离接收和传送信道。
FDD模式的优点是***用包交换等技术,可突破二代发展的瓶颈,实现高速数据业务,并可提高频谱利用率,增加系统容量。但FDD必须***用成对的频率,即在每2 x 5MHz的带宽内提供第三代业务。
该方式在支持对称业务时,能充分利用上下行的频谱,但在非对称的分组交换(互联网)工作时,频谱利用率则大大降低(由于低上行负载,造成频谱利用率降低约40%)。 在这点上,TDD模式有着FDD无法比拟的优势。
MAC的LTE中MAC层结构及功能
E-UTRA提供了两种MAC实体:位于UE的MAC实体;位于E-UTRAN的MAC实体。
功能
1、逻辑信道与传输信道之间的映射。
2、将来自一个或多个逻辑信道的MACSDU复用到一个传输块(TB),通过传输信道发给物理层。
3、将一个或多个逻辑信道的MACSDU解复用,这些SDU来自于物理层通过传输信道发送的TB。
4、调度信息上报。
5、通过HARQ进行错误纠正。
6、通过动态调度在UE之间进行优先级操作。
7、同一个UE的逻辑信道间进行优先级的操作。
8、逻辑信道优先级排序。
9、传输格式选择。
扩展资料
MAC层是只在LLC层的支持下为共享介质PHY提供访问控制功能(如寻址方式、访问协调、帧校验序列生成和检查,以及LLCPDU定界)。MAC层在LLC层的支持下执行寻址方式和帧识别功能。802.11标准利用CSMA/CA(载波监听多路访问/冲突防止)。
而标准以太网利用CSMA/CD(载波监听多路访问/冲突检测)。在同一个信道上利用无线电收发器既传输又接收是不可能的,因此,802.11无线LAN***取措施仅是为了避免冲突。
参考资料来源:百度百科-MAC层
参考资料来源:百度百科-LTE MAC层
lte网络架构图各接口的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于LTE架构图、lte网络架构图各接口的信息别忘了在本站进行查找喔。
-
上一篇
网络安全app警察(网络安全App) -
下一篇
开业微信推广文案(开业微信宣传文案)