神经网络基础***设(神经网络理论及应用答案)

网络设计 909
今天给各位分享神经网络基础假设的知识,其中也会对神经网络理论及应用答案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、神经网络相关名词解释

今天给各位分享神经网络基础***设的知识,其中也会对神经网络理论及应用答案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

神经网络相关名词解释

很多人认为深度学习很枯燥,大部分情况是因为对深度学习的学术词语,特别是专有名词很困惑,即便对相关从业者,亦很难深入浅出地解释这些词语的含义。 

相信读过此文的圈友,会对深度学习有个全新的认识,机器人圈希望可以为圈友的深度学习之路起到一些辅助作用。

人工智能,深度学习,机器学习—无论你在做什么,如果你对它不是很了解的话—去学习它。否则的话不用三年你就跟不上时代的潮流了。——马克.库班

马克.库班的这个观点可能听起来很极端——但是它所传达的信息是完全正确的! 我们正处于一场革命的旋涡之中——一场由大数据和计算能力引起的革命。

只需要一分钟,我们来想象一下,在20世纪初,如果一个人不了解电力,他/她会觉得如何?你会习惯于以某种特定的方式来做事情,日复一日,年复一年,而你周围的一切事情都在发生变化,一件需要很多人才能完成的事情仅依靠一个人和电力就可以轻松搞定,而我们今天正以机器学习和深度学习的方式在经历一场相似的旅程。

所以,如果你还没有探索或理解深度学习的神奇力量——那你应该从今天就开始进入这一领域。

与主题相关的术语

为了帮助你了解各种术语,我已经将它们分成3组。如果你正在寻找特定术语,你可以跳到该部分。如果你是这个领域的新手,那我建议你按照我写的顺序来通读它们。

1.神经网络基础(Basics of Neural Networks) ——常用激活函数(Common Activation Functions) 

2.卷积神经网络(Convolutional Neural Networks) 

3.循环神经网络(Recurrent Neural Networks)

神经网络基础

1)神经元(Neuron) ——就像形成我们大脑基本元素的神经元一样,神经元形成神经网络的基本结构。想象一下,当我们得到新信息时我们该怎么做。当我们获取信息时,我们一般会处理它,然后生成一个输出。类似地,在神经网络的情况下,神经元接收输入,处理它并产生输出,而这个输出被发送到其他神经元用于进一步处理,或者作为最终输出进行输出。 

2)权重(Weights) ——当输入进入神经元时,它会乘以一个权重。例如,如果一个神经元有两个输入,则每个输入将具有分配给它的一个关联权重。我们随机初始化权重,并在模型训练过程中更新这些权重。训练后的神经网络对其输入赋予较高的权重,这是它认为与不那么重要的输入相比更为重要的输入。为零的权重则表示特定的特征是微不足道的。

让我们***设输入为a,并且与其相关联的权重为W1,那么在通过节点之后,输入变为a * W1 

3)偏差(Bias) ——除了权重之外,另一个被应用于输入的线性分量被称为偏差。它被加到权重与输入相乘的结果中。基本上添加偏差的目的是来改变权重与输入相乘所得结果的范围的。添加偏差后,结果将看起来像a* W1 +偏差。这是输入变换的最终线性分量。

4)激活函数(Activation Function) ——一旦将线性分量应用于输入,将会需要应用一个非线性函数。这通过将激活函数应用于线性组合来完成。激活函数将输入信号转换为输出信号。应用激活函数后的输出看起来像f(a * W1 + b),其中f()就是激活函数。

在下图中,我们将“n”个输入给定为X1到Xn而与其相应的权重为Wk1到Wkn。我们有一个给定值为bk的偏差。权重首先乘以与其对应的输入,然后与偏差加在一起。而这个值叫做u。

U =ΣW* X+ b

激活函数被应用于u,即 f(u),并且我们会从神经元接收最终输出,如yk = f(u)。

常用的激活函数  

最常用的激活函数就是Sigmoid,ReLU和softmax

a)Sigmoid ——最常用的激活函数之一是Sigmoid,它被定义为: 

Sigmoid变换产生一个值为0到1之间更平滑的范围。我们可能需要观察在输入值略有变化时输出值中发生的变化。光滑的曲线使我们能够做到这一点,因此优于阶跃函数。

b)ReLU(整流线性单位) ——与Sigmoid函数不同的是,最近的网络更喜欢使用ReLu激活函数来处理隐藏层。该函数定义为: 

当X0时,函数的输出值为X;当X=0时,输出值为0。函数图如下图所示: 

使用ReLU函数的最主要的好处是对于大于0的所有输入来说,它都有一个不变的导数值。常数导数值有助于网络训练进行得更快。

c) Softmax ——Softmax激活函数通常用于输出层,用于分类问题。它与sigmoid函数是很类似的,唯一的区别就是输出被归一化为总和为1。Sigmoid函数将发挥作用以防我们有一个二进制输出,但是如果我们有一个多类分类问题,softmax函数使为每个类分配值这种操作变得相当简单,而这可以将其解释为概率。

以这种方式来操作的话,我们很容易看到——***设你正在尝试识别一个可能看起来像8的6。该函数将为每个数字分配值如下。我们可以很容易地看出,最高概率被分配给6,而下一个最高概率分配给8,依此类推……

5)神经网络(Neural Network) ——神经网络构成了深度学习的支柱。神经网络的目标是找到一个未知函数的近似值。它由相互联系的神经元形成。这些神经元具有权重和在网络训练期间根据错误来进行更新的偏差。激活函数将非线性变换置于线性组合,而这个线性组合稍后会生成输出。激活的神经元的组合会给出输出值。

一个很好的神经网络定义——

“神经网络由许多相互关联的概念化的人造神经元组成,它们之间传递相互数据,并且具有根据网络”经验“调整的相关权重。神经元具有激活阈值,如果通过其相关权重的组合和传递给他们的数据满足这个阈值的话,其将被解雇;发射神经元的组合导致“学习”。

6)输入/输出/隐藏层(Input / Output / Hidden Layer) ——正如它们名字所代表的那样,输入层是接收输入那一层,本质上是网络的第一层。而输出层是生成输出的那一层,也可以说是网络的最终层。处理层是网络中的隐藏层。这些隐藏层是对传入数据执行特定任务并将其生成的输出传递到下一层的那些层。输入和输出层是我们可见的,而中间层则是隐藏的。

7)MLP(多层感知器) ——单个神经元将无法执行高度复杂的任务。因此,我们使用堆栈的神经元来生成我们所需要的输出。在最简单的网络中,我们将有一个输入层、一个隐藏层和一个输出层。每个层都有多个神经元,并且每个层中的所有神经元都连接到下一层的所有神经元。这些网络也可以被称为完全连接的网络。 

8)正向传播(Forward Propagation) ——正向传播是指输入通过隐藏层到输出层的运动。在正向传播中,信息沿着一个单一方向前进。输入层将输入提供给隐藏层,然后生成输出。这过程中是没有反向运动的。

9)成本函数(Cost Function) ——当我们建立一个网络时,网络试图将输出预测得尽可能靠近实际值。我们使用成本/损失函数来衡量网络的准确性。而成本或损失函数会在发生错误时尝试惩罚网络。

我们在运行网络时的目标是提高我们的预测精度并减少误差,从而最大限度地降低成本。最优化的输出是那些成本或损失函数值最小的输出。

如果我将成本函数定义为均方误差,则可以写为:

C= 1/m ∑(y–a)^2,

其中m是训练输入的数量,a是预测值,y是该特定示例的实际值。

学习过程围绕最小化成本来进行。

10)梯度下降(Gradient Descent) ——梯度下降是一种最小化成本的优化算法。要直观地想一想,在爬山的时候,你应该会***取小步骤,一步一步走下来,而不是一下子跳下来。因此,我们所做的就是,如果我们从一个点x开始,我们向下移动一点,即Δh,并将我们的位置更新为x-Δh,并且我们继续保持一致,直到达到底部。考虑最低成本点。

在数学上,为了找到函数的局部最小值,我们通常***取与函数梯度的负数成比例的步长。

11)学习率(Learning Rate) ——学习率被定义为每次迭代中成本函数中最小化的量。简单来说,我们下降到成本函数的最小值的速率是学习率。我们应该非常仔细地选择学习率,因为它不应该是非常大的,以至于最佳解决方案被错过,也不应该非常低,以至于网络需要融合。

12)反向传播(Backpropagation) ——当我们定义神经网络时,我们为我们的节点分配随机权重和偏差值。一旦我们收到单次迭代的输出,我们就可以计算出网络的错误。然后将该错误与成本函数的梯度一起反馈给网络以更新网络的权重。 最后更新这些权重,以便减少后续迭代中的错误。使用成本函数的梯度的权重的更新被称为反向传播。

在反向传播中,网络的运动是向后的,错误随着梯度从外层通过隐藏层流回,权重被更新。

13)批次(Batches) ——在训练神经网络的同时,不用一次发送整个输入,我们将输入分成几个随机大小相等的块。与整个数据集一次性馈送到网络时建立的模型相比,批量训练数据使得模型更加广义化。

14)周期(Epochs) ——周期被定义为向前和向后传播中所有批次的单次训练迭代。这意味着1个周期是整个输入数据的单次向前和向后传递。

你可以选择你用来训练网络的周期数量,更多的周期将显示出更高的网络准确性,然而,网络融合也需要更长的时间。另外,你必须注意,如果周期数太高,网络可能会过度拟合。

15)丢弃(Dropout) ——Dropout是一种正则化技术,可防止网络过度拟合套。顾名思义,在训练期间,隐藏层中的一定数量的神经元被随机地丢弃。这意味着训练发生在神经网络的不同组合的神经网络的几个架构上。你可以将Dropout视为一种综合技术,然后将多个网络的输出用于产生最终输出。

16)批量归一化(Batch Normalization) ——作为一个概念,批量归一化可以被认为是我们在河流中设定为特定检查点的水坝。这样做是为了确保数据的分发与希望获得的下一层相同。当我们训练神经网络时,权重在梯度下降的每个步骤之后都会改变,这会改变数据的形状如何发送到下一层。

但是下一层预期分布类似于之前所看到的分布。 所以我们在将数据发送到下一层之前明确规范化数据。

17)滤波器(Filters) ——CNN中的滤波器与加权矩阵一样,它与输入图像的一部分相乘以产生一个回旋输出。我们***设有一个大小为28 * 28的图像,我们随机分配一个大小为3 * 3的滤波器,然后与图像不同的3 * 3部分相乘,形成所谓的卷积输出。滤波器尺寸通常小于原始图像尺寸。在成本最小化的反向传播期间,滤波器值被更新为重量值。

参考一下下图,这里filter是一个3 * 3矩阵:

与图像的每个3 * 3部分相乘以形成卷积特征。

18)卷积神经网络(CNN) ——卷积神经网络基本上应用于图像数据。***设我们有一个输入的大小(28 * 28 * 3),如果我们使用正常的神经网络,将有2352(28 * 28 * 3)参数。并且随着图像的大小增加参数的数量变得非常大。我们“卷积”图像以减少参数数量(如上面滤波器定义所示)。当我们将滤波器滑动到输入体积的宽度和高度时,将产生一个二维激活图,给出该滤波器在每个位置的输出。我们将沿深度尺寸堆叠这些激活图,并产生输出量。

你可以看到下面的图,以获得更清晰的印象。

19)池化(Pooling) ——通常在卷积层之间定期引入池层。这基本上是为了减少一些参数,并防止过度拟合。最常见的池化类型是使用MAX操作的滤波器尺寸(2,2)的池层。它会做的是,它将占用原始图像的每个4 * 4矩阵的最大值。

你还可以使用其他操作(如平均池)进行池化,但是最大池数量在实践中表现更好。

20)填充(Padding) ——填充是指在图像之间添加额外的零层,以使输出图像的大小与输入相同。这被称为相同的填充。

在应用滤波器之后,在相同填充的情况下,卷积层具有等于实际图像的大小。

有效填充是指将图像保持为具有实际或“有效”的图像的所有像素。在这种情况下,在应用滤波器之后,输出的长度和宽度的大小在每个卷积层处不断减小。

21)数据增强(Data Augmentation) ——数据增强是指从给定数据导出的新数据的添加,这可能被证明对预测有益。例如,如果你使光线变亮,可能更容易在较暗的图像中看到猫,或者例如,数字识别中的9可能会稍微倾斜或旋转。在这种情况下,旋转将解决问题并提高我们的模型的准确性。通过旋转或增亮,我们正在提高数据的质量。这被称为数据增强。

循环神经网络

22)循环神经元(Recurrent Neuron) ——循环神经元是在T时间内将神经元的输出发送回给它。如果你看图,输出将返回输入t次。展开的神经元看起来像连接在一起的t个不同的神经元。这个神经元的基本优点是它给出了更广义的输出。

23)循环神经网络(RNN) ——循环神经网络特别用于顺序数据,其中先前的输出用于预测下一个输出。在这种情况下,网络中有循环。隐藏神经元内的循环使他们能够存储有关前一个单词的信息一段时间,以便能够预测输出。隐藏层的输出在t时间戳内再次发送到隐藏层。展开的神经元看起来像上图。只有在完成所有的时间戳后,循环神经元的输出才能进入下一层。发送的输出更广泛,以前的信息保留的时间也较长。

然后根据展开的网络将错误反向传播以更新权重。这被称为通过时间的反向传播(BPTT)。

24)消失梯度问题(Vanishing Gradient Problem) ——激活函数的梯度非常小的情况下会出现消失梯度问题。在权重乘以这些低梯度时的反向传播过程中,它们往往变得非常小,并且随着网络进一步深入而“消失”。这使得神经网络忘记了长距离依赖。这对循环神经网络来说是一个问题,长期依赖对于网络来说是非常重要的。

这可以通过使用不具有小梯度的激活函数ReLu来解决。

25)激增梯度问题(Exploding Gradient Problem) ——这与消失的梯度问题完全相反,激活函数的梯度过大。在反向传播期间,它使特定节点的权重相对于其他节点的权重非常高,这使得它们不重要。这可以通过剪切梯度来轻松解决,使其不超过一定值。

AI面试题第二弹(神经网络基础)

提取主要特征,减小网络参数量,减小计算量

层层传递的梯度1 梯度爆炸

层层传递的梯度1 梯度消失

与权重有很大关系,激活函数的影响较小。

每次训练一层隐节点,训练时将上一层隐节点的输出作为输入,而本层隐节点的输出作为下一层隐节点的输入,此过程就是逐层“预训练”(pre-training);在预训练完成后,再对整个网络进行“微调”(fine-tunning)。Hinton在训练深度信念网络(Deep Belief Networks中,使用了这个方法,在各层预训练完成后,再利用BP算法对整个网络进行训练。

这个方案主要是针对梯度爆炸提出的,其思想是设置一个梯度剪切阈值,然后更新梯度的时候,如果梯度超过这个阈值,那么就将其强制限制在这个范围之内。这可以防止梯度爆炸。

比较常见的是l1l1l1正则,和l2l2l2正则,在各个深度框架中都有相应的API可以使用正则化

反向传播中,经过每一层的梯度会乘以该层的权重。

举个简单例子:

为了得到一致***设而使***设变得过度复杂称为过拟合(overfitting), 过拟合表现在训练好的模型在训练集上效果很好,但是在测试集上效果差 。也就是说模型的泛化能力弱。

过拟合主要由两个原因造成,数据集太小或模型太复杂

(1). 数据集扩增(Data Augmentation)

(2). 改进模型

·Early Stopping。在模型效果比较好的时候便提前停止训练

 ·正则化(regularization)

L1:稀疏参数

L2:更小参数

·Dropout

·多任务学习

深度学习中两种多任务学习模式:隐层参数的硬共享和软共享

硬共享机制是指在所有任务***享隐藏层,同时保留几个特定任务的输出层来实现。硬共享机制降低了过拟合的风险。多个任务同时学习,模型就越能捕捉到多个任务的同一表示,从而导致模型在原始任务上的过拟合风险越小。

软共享机制是指每个任务有自己的模型,自己的参数。模型参数之间的距离是正则化的,以便保障参数相似性。

见后文

leaky relu

输入是x输出是y,正常的流程是:我们首先把x通过网络前向传播,然后把误差反向传播以决定如何更新参数让网络进行学习。使用Dropout之后,过程变成如下:

(1)首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(图中虚线为部分临时被删除的神经元)

(2) 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)。

(3)然后继续重复这一过程:

恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)

从隐藏层神经元中随机选择一个一半大小的子集临时删除掉(备份被删除神经元的参数)。

对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)。

不断重复这一过程。

没有对数据进行归一化

忘记检查输入和输出

没有对数据进行预处理

没有对数据正则化

使用过大的样本

使用不正确的学习率

在输出层使用错误的激活函数

网络中包含坏梯度

初始化权重错误

过深的网络

隐藏单元数量错误

网络设计不合理(任务-网络不匹配)

机器学习有个很重要的***设:就是***设训练数据和测试数据是满足独立同分布的,这保障了通过训练数据获得的优秀模型也能够在测试集获得好的效果。但是在机器学习训练中输入层的每个批量(X,Y)中X的分布是不一致的,并且神经网络的隐藏层的输入分布在每次训练迭代中发生变化。 BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布的。

BN的基本思想其实相当直观:因为深层神经网络在做非线性变换前(激活前)的 输入值 (就是那个x=WU+B,U是输入) 随着网络深度加深或者在训练过程中,其分布逐渐发生偏移或者变动,之所以训练收敛慢,一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近 (对于Sigmoid函数来说,意味着激活输入值WU+B是大的负值或正值),所以这 导致反向传播时低层神经网络的梯度消失 ,这是训练深层神经网络收敛越来越慢的 本质原因 , 而BN就是通过一定的规范化手段,把每层神经网络任意神经元这个输入值的分布强行拉回到均值为0方差为1的标准正态分布 ,其实就是把越来越偏的分布强制拉回比较标准的分布,这样使得激活输入值落在非线性函数对输入比较敏感的区域,这样输入的小变化就会导致损失函数较大的变化,意思是 这样让梯度变大,避免梯度消失问题产生,而且梯度变大意味着学习收敛速度快,能大大加快训练速度。

但是接下来的问题是:如果都通过BN,那么不就跟把非线性函数替换成线性函数效果相同了,意味着网络的非线性表达能力下降了, 所以BN为了保证非线性的获得,对变换后的满足均值为0方差为1的x又进行了scale加上shift操作(y=scale*x+shift), 每个神经元增加了两个参数scale和shift参数,这两个参数是通过训练学习到的,意思是通过scale和shift把这个值从标准正态分布左移或者右移一点并长胖一点或者变瘦一点,每个实例挪动的程度不一样,这样等价于激活前的值经过标准正太分布归一化后再从正中心周围的线性区往非线性区动了动。核心思想应该是想找到一个线性和非线性的较好平衡点,既能享受非线性的较强表达能力的好处,又避免太靠非线性区两头使得网络收敛速度太慢

Batch Normalization 好处:(1)提高了训练速度,收敛速度也大大加快(2)另外调参过程也简单多了,对于初始化要求没那么高,而且可以使用大的学习率等 (3)可以防止梯度消失(4)BN类似于Dropout的一种防止过拟合的正则化表达方式,可以有效防止过拟合,不用太依赖dropou和正则化

以下情况最好不要使用BN:(1)数据不平衡(2)batch_size太小

batch_size是机器学习中的一个重要参数,决定了梯度下降的方向,如果数据集比较小,完全可以***用全数据集的形式计算梯度,由全数据集确定的梯度方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。对于大型数据集则需要使用mini-batch_size,因为随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行。

当batch_size=1,即在线学习,模型难以达到收敛 。

合理增加batch_size好处 :

(1)内存利用率提高了,大矩阵乘法的并行化效率提高

(2)跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。

(3)在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小

盲目增大 Batch_Size 坏处 :

(1)内存利用率提高了,但是内存容量可能撑不住了

(2)跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同精度所需要的 epoch 数量越来越多,花费的时间越长

(3)大的batchsize收敛到sharp minimum,而小的batchsize收敛到flat minimum,后者具有更好的泛化能力。

总之batchsize在变得很大(超过一个临界点)时,会降低模型的泛化能力。在这个临界点之下,模型的性能变换随batch size通常没有学习率敏感

    目标所在的真实框(ground truth) 与算法预测的目标所在的框(bounding box)的交集与并集的比值,我们会用IOU阈值来判定预测的bounding box是否有效。一般阈值会设定在0.5,当IOU的值大于等于0.5时,我们会把这个预测的bounding box 归为正类,而小于0.5的归为负类。

牛顿法使用的是目标函数的二阶导数,在高维情况下这个Hessian(n*n维度)矩阵非常大,计算复杂度是n*n,计算和存储都是问题

(1) 通过控制卷积核个数实现升维或者降维,从而减少模型参数和计算量

(2) 用于不同channel上特征的融合

(3)1x1的卷积相当于全连接层的计算过程,并且加入了非线性激活函数,从而增加了网络的非线性,使得网络可以表达更加复杂的特征。

它能够把输入的连续实值变换为0和1之间的输出,如果是非常大的负数,那么输出就是0;如果是非常大的正数,输出就是1

缺点:

(1)函数的饱和区,导致梯度几乎为0,造成梯度消失问题

(2)Sigmoid 的 output 不是0均值,具体解释见

(3)其解析式中含有幂运算,计算机求解时相对来讲比较耗时。对于规模比较大的深度网络,这会较大地增加训练时间。

它解决了Sigmoid函数的不是零均值输出问题,然而,梯度消失(gradient vanishing)的问题和幂运算的问题仍然存在。

(1)在正区间解决了梯度消失的问题

(2)函数简单,计算速度快,收敛速度远快于sigmoid和tanh

缺点:

(1)Relu函数输出不是0均值

(2)神经元坏死问题:指的是某些神经元可能永远不会被激活,导致相应的参数永远不能被更新,有两个主要原因导致这种状况发生

        (1) 非常不幸的参数初始化,这种情况比较少见 

        (2) learning rate太高导致在训练过程中参数更新太大,不幸使网络进入这种状态。解决方法是可以***用X***ier初始化方法,以及避免将learning rate设置太大或使用adagrad等自动调节learning rate的算法

为了解决ReLU函数带来的神经元坏死问题 , 提出了将ReLU的前半段设为αx,α通常设为0.01,,另外一种直观的想法是基于参数的方法PReLU函数, α可由方向传播算法学习出来。

ELU也是为解决ReLU存在的问题而提出,显然,ELU有ReLU的基本所有优点,以及:(1)不会有神经元坏死现象(2)函数输出均值接近于0

但是ELU的小问题就是计算量稍微有点大。

1、使用不同的激活函数,比如Relu,Leak-Relu,PRelu,elu等激活函数代替sigmoid函数

2、使用Batch Normalizaion(批量归一化)

3、使用残差网络

4、预训练加微调

1、梯度裁剪

2、权重正则化

两个3x3的卷积核的感受野比5x5的卷积核的感受野大,在保持相同感受野的同时,用3x3的卷积核可以提升网络的深度,可以很明显的减少计算量。

1、局部连接

2、权值共享:减小参数量

3、池化操作:增大感受野

4、多层次结构:可以提取low-level以及high-level的信息

1、数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势。

2、数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性。图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变。对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理。举个例子:预测一个人的健康状况,相关的参数会有年龄、职业、收入、家庭状况等各种元素,将这些元素打乱,并不会影响相关的结果。

作用 :对输入的特征图进行压缩,

一方面使特征图变小,简化网络计算复杂度;

一方面进行特征压缩,提取主要特征。

通常来讲,max-pooling的效果更好,虽然max-pooling和***erage-pooling都对数据做了下***样,但是 max-pooling感觉更像是做了特征选择,选出了分类辨识度更好的特征,提供了非线性 。 pooling的主要作用一方面是去掉冗余信息,一方面要保留feature map的特征信息,在分类问题中,我们需要知道的是这张图像有什么object,而不大关心这个object位置在哪,在这种情况下显然max pooling比***erage pooling更合适。在 网络比较深的地方,特征已经稀疏了,从一块区域里选出最大的,比起这片区域的平均值来,更能把稀疏的特征传递下去 。

***erage-pooling更强调对整体特征信息进行一层下***样,在减少参数维度的贡献上更大一点,更多的体现在 信息的完整传递这个维度 上,在一个很大很有代表性的模型中,比如说DenseNet中的模块之间的连接大多***用***erage-pooling,在减少维度的同时,更有利信息传递到下一个模块进行特征提取。

***erage-pooling在 全局平均池化操作 中应用也比较广,在ResNet和Inception结构中最后一层都使用了平均池化。有的时候在模型接近 分类器的末端使用全局平均池化还可以代替Flatten操作 ,使输入数据变成一位向量。

CNN网络中另外一个不可导的环节就是Pooling池化操作,因为Pooling操作使得feature map的尺寸变化,***如做2×2的池化(步长也为2),***设那么第l+1层的feature map有16个梯度,那么第l层就会有64个梯度,这使得梯度无法对位的进行传播下去。其实解决这个问题的思想也很简单,就是把1个像素的梯度传递给4个像素,但是需要保证传递的loss(或者梯度)总和不变。根据这条原则,mean pooling和max pooling的反向传播也是不同的

mean pooling的前向传播就是把一个patch中的值求取平均来做pooling,那么反向传播的过程也就是把 某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度(残差)之和保持不变 ,图示如下 :

(2) max pooling

max pooling也要满足梯度之和不变的原则 ,max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么 反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。 所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么***设前向传播和反向传播的过程就如下图所示 :

28、细粒度分类

29、LSTMRNN

30、解释LSTM结构(相对于RNN)的好处

31、RNN的梯度消失原因和解决办法

32、Object Detection

33、Unet的介绍

34、FCN和Unet的区别

35、RCNN系列的算法流程和区别

36、Fast RCNN中 bbox 回归的损失函数什么

37、解释 ROI Pooling 和 ROI Align

38、Mask RCNN中 mask branch 如何接入 Faster RCNN中

39、解释 FPN

40、解释 ROI Align

41、简述 YOLO 和 SSD

42、简述 Hough 直线检测、Sobel 边缘检测算法流程

43、Mask RCNN中的anchors如何判定为正负样本

44、简述 NMS 算法流程

45、attention起源是用在哪里?pixel还是frame,是soft还是hard

46、anchor的正负样本比是多少

47、算法和激活函数等

48、BN的原理和作用

49、BN层反向传播,怎么求导

50、BN 的作用和缺陷,以及针对batch_size小的情况的改进(GN)

51、BN层,先加BN还是激活,有什么区别

52、手推BP

53、优化算法举例和他们的区别(SGD、SGDM、RMSprop、Adam)

54、随机梯度下降和梯度下降

55、训练不收敛的原因有哪些

56、简述 SVM 流程、核函数寻参及常见的核函数举例

57、batch_size 和 learning rate 的关系(怎么平衡和调整二者)

58、解释过拟合和欠拟合,以及解决方法

59、激活函数有哪些,各自区别

60、损失函数有哪些

61、Sigmoid 和 ReLu 对比(各自优缺点)

62、为什么不用sigmoid而用relu?做出了哪些改进?

63、梯度消失和梯度爆炸的原因和解决方法

64、Precision 和 Recall 的定义

65、精确率高、召回率低是为什么

66、SVM,线性回归和逻辑回归的原理及区别

67、PCA原理,PCA和SVD的区别和联系

68、正则化怎么选择,有哪些方式

69、L1、L2范数,区别

70、boost、Adaboost

71、dropout和batch normalization

72、讲一下决策树和随机森林

73、讲一下GBDT的细节,写出GBDT的目标函数。 GBDT和Adaboost的区别与联系

74、偏差、方差

75、距离度量公式哪些,区别

76、多标签识别怎么做

77、data argumentation怎么处理的

78、数据不均衡怎么处理、只有少量带标签怎么处理

79、权重初始化方法都有哪些

80、权值衰减这个参数怎么设置

81、分类问题有哪些评价指标?每种的适用场景。

82、无监督学习了解哪些

83、图像处理Opencv

84、边缘检测算子有哪些

85、霍夫变换

86、直方图是什么

87、canny算子是怎么做的

88、图像的特征提取有哪些算法,适用范围、优缺点

参考:

卷积神经网络(CNN)基础

在七月初七情人节,牛郎织女相见的一天,我终于学习了CNN(来自CS231n),感觉感触良多,所以赶快记下来,别忘了,最后祝大家情人节快乐5555555.正题开始!

CNN一共有卷积层(CONV)、ReLU层(ReLU)、池化层(Pooling)、全连接层(FC(Full Connection))下面是各个层的详细解释。

卷积,尤其是图像的卷积,需要一个滤波器,用滤波器对整个图像进行遍历,我们***设有一个32*32*3的原始图像A,滤波器的尺寸为5*5*3,用w表示,滤波器中的数据就是CNN的参数的一部分,那么在使用滤波器w对A进行滤波的话,可以用下面的式子表示:

其中x为原始图像的5*5*3的一部分,b是偏置项置为1。在对A进行滤波之后,产生的是一个28*28*1的数据。那么***设我们存在6个滤波器,这六个滤波器之间彼此是独立的,也就是他们内部的数据是不同的且没有相关性的。可以理解为一个滤波器查找整幅图像的垂直边缘,一个查找水平边缘,一个查找红色,一个查找黑色这样。那么我就可以产生6个28*28*1的数据,将它们组合到一起就可以产生28*28*6的数据,这就是卷积层主要做的工作。

CNN可以看作一系列的卷积层和ReLU层对原始数据结构进行处理的神经网络,处理的过程可以用下面这幅图表示

特别要注意的是滤波器的深度一定要与上一层传来的数据的深度相同,就像上图的第二个卷积层在处理传来的28*28*6的数据时要使用5*5*6的滤波器.

滤波器在图像上不断移动对图像滤波,自然存在步长的问题,在上面我们举的例子都是步长为1的情况,如果步长为3的话,32*32*3的图像经过5*5*3的滤波器卷积得到的大小是(32-5)/3+1=10, 注:步长不能为2因为(32-5)/2+1=14.5是小数。

所以当图像大小是N,滤波器尺寸为F时,步长S,那么卷积后大小为(N-F)/S+1

我们从上面的图中可以看到图像的长和宽在逐渐的减小,在经过超过5层之后极可能只剩下1*1的空间尺度,这样是十分不好的,而且也不利于我们接下来的计算,所以我们想让卷积层处理完之后图像在空间尺度上大小不变,所以我们引入了pad the border的操作。pad其实就是在图像周围补0,扩大图像的尺寸,使得卷积后图像大小不变。在CNN中,主要存在4个超参数,滤波器个数K,滤波器大小F,pad大小P和步长S,其中P是整数,当P=1时,对原始数据的操作如图所示:

那么在pad操作后卷积后的图像大小为:(N-F+2*P)/S+1

而要想让卷积层处理后图像空间尺度不变,P的值可以设为P=(F-1)/2

卷积层输入W 1 *H 1 *D 1 大小的数据,输出W 2 *H 2 *D 2 的数据,此时的卷积层共有4个超参数:

K:滤波器个数

P:pad属性值

S:滤波器每次移动的步长

F:滤波器尺寸

此时输出的大小可以用输入和超参计算得到:

W 2 =(W 1 -F+2P)/S+1

H 2 =(H 1 -F+2P)/S+1

D 2 =D 1

1*1的滤波器也是有意义的,它在深度方向做卷积,例如1*1*64的滤波器对56*56*64的数据卷积得到56*56的数据

F通常是奇数,这样可以综合考虑上下左右四个方向的数据。

卷积层从神经元的角度看待可以有两个性质: 参数共享和局域连接 。对待一个滤波器,例如5*5*3的一个滤波器,对32*32*3的数据卷积得到28*28的数据,可以看作存在28*28个神经元,每个对原图像5*5*3的区域进行计算,这28*28个神经元由于使用同一个滤波器,所以参数相同,我们称这一特性为 参数共享 。

针对不同的滤波器,我们可以看到他们会看到同一区域的图像,相当于在深度方向存在多个神经元,他们看着相同区域叫做 局域连接

参数共享减少了参数的数量,防止了过拟合

局域连接为查找不同特征更丰富的表现图像提供了可能。

卷积就像是对原图像的另一种表达。

激活函数,对于每一个维度经过ReLU函数输出即可。不改变数据的空间尺度。

通过pad操作,输出图像在控件上并没有变化,但是深度发生了变化,越来越庞大的数据给计算带来了困难,也出现了冗余的特征,所以需要进行池化操作,池化不改变深度,只改变长宽,主要有最大值和均值两种方法,一般的池化滤波器大小F为2步长为2,对于最大值池化可以用下面的图像清晰的表示:

卷积层输入W 1 *H 1 *D 1 大小的数据,输出W 2 *H 2 *D 2 的数据,此时的卷积层共有2个超参数:

S:滤波器每次移动的步长

F:滤波器尺寸

此时输出的大小可以用输入和超参计算得到:

W 2 =(W 1 -F)/S+1

H 2 =(H 1 -F)/S+1

D 2 =D 1

将最后一层(CONV、ReLU或Pool)处理后的数据输入全连接层,对于W 2 *H 2 *D 2 数据,我们将其展成1*1*W 2 *H 2 *D 2 大小的数据,输入层共有W 2 *H 2 *D 2 个神经元,最后根据问题确定输出层的规模,输出层可以用softmax表示。也就是说,全连接层就是一个常见的BP神经网络。而这个网络也是参数最多的部分,是接下来想要去掉的部分。完整的神经网络可以用下面的图表示:

[(CONV-ReLU)*N-POOL?]*M-(FC-RELU)*K,SoftMax

1.更小的滤波器与更深的网络

2.只有CONV层而去掉池化与全链接

最早的CNN,用于识别邮编,结构为:

CONV-POOL-CONV-POOL-CONV-FC

滤波器大小5*5,步长为1,池化层2*2,步长为2

2012年由于GPU技术所限,原始AlexNet为两个GPU分开计算,这里介绍合起来的结构。

输入图像为227*227*3

1.首次使用ReLU

2.使用Norm layers,现在已经抛弃,因为效果不大

3.数据经过预处理(例如大小变化,颜色变化等)

4.失活比率0.5

5.batch size 128

6.SGD Momentum 参数0.9(SGD和Momentum见我的其他文章)

7.学习速率 0.01,准确率不在提升时减少10倍,1-2次后达到收敛

8.L2权重减少0.0005

9.错误率15.4%

改进自AlexNet,主要改变:

1.CONV1的滤波器从11*11步长S=4改为7*7步长为2.

2.CONV3,4,5滤波器数量有384,384,256改为512,***,512(滤波器数量为2的n次幂有利于计算机计算可以提高效率)

错误率:14.8%后继续改进至11.2%

当前最好的最易用的CNN网络,所有卷积层滤波器的大小均为3*3,步长为1,pad=1,池化层为2*2的最大值池化,S=2。

主要参数来自全连接层,这也是想要去掉FC的原因。

具有高度的统一性和线性的组合,易于理解,十分方便有VGG-16,VGG-19等多种结构。

错误率7.3%

完全移除FC层,参数只有500万,使用Inception模块(不太理解,有时间继续看)

准确率6.67%

准确率3.6%

拥有极深的网络结构,且越深准确率越高。是传统CNN不具备的特点,传统CNN并非越深越准确。需要训练时间较长但是快于VGG

1.每个卷积层使用Batch Normalization

2.X***ier/2初始化

3.SGD+Momentum(0.9)

4.Learning rate:0.1,准确率不变减小10倍(因为Batch Normalization所以比AlexNet大)

5.mini-batch size 256

6.Weight decay of 0.00001

7.不适用失活(因为Batch Normalization)

具体的梯度过程学完ResNet再说吧。

神经网络基础***设的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于神经网络理论及应用答案、神经网络基础***设的信息别忘了在本站进行查找喔。

扫码二维码