5G核心网网络架构有何特点(5G网络架构是基于什么架构)

网络设计 311
今天给各位分享5G核心网网络架构有何特点的知识,其中也会对5G网络架构是基于什么架构进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、什么事5G SA?

今天给各位分享5G核心网网络架构有何特点的知识,其中也会对5G网络架构是基于什么架构进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

什么事5G SA?

SA是Standalone的缩写,独立组网的意思,是5G的一种组网类型。在SA独立组网的模式下,用户(5G终端)接入5G基站和5G核心网,能更好地发挥5G的优势特性比如说超低延迟等。

1到5代通信网的特点

区别

具体来看,每一代通信技术在很多地方都有不同,但最大的区别首先是速度不同。一般来说,2G的GPRS上网一般最高30K左右,3G可以达到700K左右,4G网速最高可达100Mbps(4G网络刚出时宣传都这么说),最新的5G最高速度可达1000Mbps。

下面介绍具体特点:

1G

第一代移动通信技术(1G)是指最初的模拟、仅限语音的蜂窝电话标准,制定于上世纪80年代。网络标准有NMT、NMT、TACS、JTAGS等,基本上欧美的发达国家都有自己的标准。到现在为止,第一代模拟蜂窝服务移动通信已经被淘汰了。

1G无线系统在设计上只能传输语音流量,并受到网络容量的限制,AMPS为1G网络的典型代表。

2G

与1G不同,2G用数字传输取代了模拟蜂窝网络,这提高了电话寻找网络的效率。从2G开始,移动通话慢慢变得普及,手机用户数量越来越多。

2G技术基本可被切为两种,一种是基于TDMA所发展出来的以GSM为代表,另一种则是CDMA规格,复用﹙Multiplexing﹚形式的一种。

3G

3G是第三代移动通信技术,是指支持高速数据传输的蜂窝移动通讯技术。3G服务能够同时传送声音及数据信息,速率一般在几百kbps以上。

3G是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,目前3G存在3种标准:CDMA2000、WCDMA、TD-SCDMA。

4G

4G指的是第四代移动通信技术,它集3G与WLAN于一体,并能够快速传输数据、高质量、音频、***和图像等。目前4G有TD-LTE和FDD-LTE两种制式,能够以100Mbps以上的速度下载,比目前的家用宽带ADSL(4兆)快25倍,并能够满足几乎所有用户对于无线服务的要求。

此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。

5G

在网速方面,5G将比现有的4G快上很多倍,这就意味着未来我们能享有4Gbps的超高网速。除了速度快和低延时,5G网络还有很强的向下兼容能力,因此在对其架构的改造上,研究人员可以有更大的自主权。

随着网络的发展,一些网络已经慢慢退出,老基站的也越来越少,目前主流的就是4G网络。5G网络现在正在加速建设中,5G手机和套餐价格是目前最大的争议,接下来的发展就我们拭目以待吧。

5g的三大核心技术

5G的三大核心技术分别是SBA、CUPS和网络切片。

什么是SBA?

SBA(ServiceBasedArchitecture),即基于服务的架构。它基于云原生构架设计,借鉴了IT领域的“微服务”理念。

众所周知,传统网元是一种紧耦合的黑盒设计,NFV(网络功能虚拟化)从黑盒设备中解耦出网络功能软件,但解耦后的软件依然是“大块头”的单体式构架,需进一步分解为细粒度化的模块化组件,并通过开放API接口来实现集成,以提升应用开发的整体敏捷性和弹性。

为此,业界提出了基于CloudNative的设计原则。

CloudNative的使命是改变世界如何构建软件,其主要由微服务架构、DevOps和以容器为代表的敏捷基础架构几部分组成,目标是实现交付的弹性、可重复性和可靠性。

微服务就是指将Monolithic(这个词太难传神翻译了,本文翻译成单体式应用程序)拆分为多个粒度更小的微服务,微服务之间通过API交互,且每个微服务独立于其他服务进行部署、升级、扩展,可在不影响客户使用的情况下频繁更新正在使用的应用。

正是基于这样的设计理念,传统网元先是转换为网络功能(NF),然后NF再被分解为多个“网络功能服务”。

SBA=网络功能服务+基于服务的接口。网络功能可由多个模块化的“网络功能服务”组成,并通过“基于服务的接口”来展现其功能,因此“网络功能服务”可以被授权的NF灵活使用。

其中,NRF(NFRepositoryFunction,NF贮存功能)支持网络功能服务注册登记、状态监测等,实现网络功能服务自动化管理、选择和可扩展。

CUPS

CUPS(ControlandUserPlaneSeparation),即控制与用户面分离。目的是让网络用户面功能摆脱“中心化”的囚禁,使其既可灵活部署于核心网(中心数据中心),也可部署于接入网(边缘数据中心),最终实现可分布式部署。

事实上,核心网一直沿着控制面和用户面分离的方向演进。比如,从R7开始,通过DirectTunnel技术将控制面和用户面分离,在3GRNC和GGSN之间建立了直连用户面隧道,用户面数据流量直接绕过SGSN在RNC和GGSN之间传输。到了R8,出现了MME这样的纯信令节点。

只是到了4.5G和5G时代,这一分离的趋势更加彻底,也更加必要。

其中一大原因就是,为了满足5G网络毫秒级时延的KPI。

光纤传播速度为200km/ms,数据要在相距几百公里以上的终端和核心网之间来回传送,显然是无法满足5G毫秒级时延的。物理距离受限,这是硬伤。

因此,需将内容下沉和分布式的部署于接入网侧(边缘数据中心),使之更接近用户,降低时延和网络回传负荷。

网络切片

5G服务是多样化的,包括车联网、大规模物联网、工业自动化、远程医疗、VR/AR等等。

这些服务对网络的要求是不一样的,比如工业自动化要求低时延、高可靠但对数据速率要求不高;******无需超低时延但要求超高速率;一些大规模物联网不需要切换,部分移动性管理对之而言是信令浪费等等,为此5G要像一把瑞士军刀一样,多功能满足差异化的网络服务。

于是,我们就要把网络切成多个虚拟且相互隔离的子网络,分别应对不同的服务。

当然,这么灵活的切片工作岂是传统大块头的黑盒设备能担当的,自然要虚拟化、软件化,再将网络功能进一步细粒度模块化,才能实现灵活组装业务应用。

因此,3GPP就确认了由中国移动牵头26家公司提出的SBA构架为5G核心网基础构架。

5g网络的组成有哪些

5G网络大致分为三个部分,无线接入网,承载网,核心网。

第五代移动通信技术(英语:5th Generation Mobile Communication Technology 简称5G)是具有高速率、低时延和大连接特点的新一代宽带移动通信技术,是实现人机物互联的网络基础设施。

为什么5G比4G快? 5G网络频段和天线特性解析

目前第一代到第四代无线通信***用的 300 MHz~3 GHz 频谱具有穿透性、覆盖范围广等优点,但存在一个非常致命的缺点:频带宽度过于狭窄,位于频段内的无线设备数量众多,频谱分配即将枯竭。为了大容量高速率数据传输,只能在 3 GHz 只上寻找可用频谱。

传输速率快

毫米波

目前第一代到第四代无线通信***用的 300 MHz~3 GHz 频谱具有穿透性、覆盖范围广等优点,但存在一个非常致命的缺点:频带宽度过于狭窄,位于频段内的无线设备数量众多,频谱分配即将枯竭。为了大容量高速率数据传输,只能在 3 GHz 只上寻找可用频谱。

毫米波频谱(3 ~300 GHz)中氧气吸收频段和水蒸气吸收频段不能用来通信,所以毫米波频段共有 252 GHz 频带宽度可供使用,实际上,各国频谱划分里分配 5G 通信网络的毫米波频段大概为 3~6 GHz,但已经足够将数据传输速率提升 10 倍以上。(再次强调,前四代商用通信技术全部拥挤在 3 GHz 以下频谱)。

更先进的波束赋形

4G 网络的基站天线主要为全向天线,5G 网络由于毫米波覆盖范围窄,路径损耗较大,受复杂天气影响严重,所以需要通过波束设计完成发射能量聚焦,从而提升接收信号质量。实际上,波束赋形后的方向性波束可以帮助提升基站覆盖范围,而且基站信号能量更加有效。

超大规模天线

无线通信中的多天线系统需要对每个天线赋予权重,才能提高空间分集,而现实情况下,这种算法是非线性的且计算复杂。由于毫米波天线波束窄,天线长度短,更适合差大规模天线应用,5G 中超大规模天线可能会有大量应用,不仅仅是大型宏基站,小型的毫米波发射机也有可能装备 Massive MIMO 系统。

传输延迟低

降低信令损耗的就方式就是减少不必要的信令,比如:

通过全双工技术减少信道估计时间;

缩减 OFDM 信号的 CP 前缀,压缩 OFDM 长度;

网格化设计毫米波基站,降低干扰和时延。

压缩网络处理

标准压缩核心网的方式就是「不经过不必要的处理单元」,换句话说就是控制结构和数据传输结构分离。主要使用「雾计算」(下方重复性工作,使用基站作为计算出单元)和「无线缓存」(缓存内容,降低传输延迟)技术。

第五代通信技术背后由数量庞大的研究所、大学做出了非常巨大的努力,5G 网络是通信产业界与学术界联合运作的结果,完善技术路线,产业和学术一起合力,才是完整的 5G 网络技术。

5G核心网网络架构有何特点的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于5G网络架构是基于什么架构、5G核心网网络架构有何特点的信息别忘了在本站进行查找喔。

扫码二维码