三层网络架构和两层网络架构(网络二层架构和三层架构)
今天给各位分享三层网络架构和两层网络架构的知识,其中也会对网络二层架构和三层架构进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、二层网络三层网络理解
- 2、二层网络结构和三层网络结构的对比
- 3、二层网络和三层网络有什么区别?2层不是mac么?咋也是网络?
- 4、2层架构和3层架构的比较?
- 5、两层架构与三层架构的区别,从优缺点角度说明?
- 6、二层网络和三层网络有什么区别?
二层网络三层网络理解
ISO七层网络模型大概作用如下:
上面写的七层网络中,物理层,数据链路层和网络层是低三层网络,其余四层是高三层网络,其中二层网络指的就是数据链路层,三层网络指的就是网络层,这两者使我们需要重点理解的地方。
在数据链路层,物理信号以帧为单位进行组织,而每帧信号都需要一个目标地址和一个源地址,该地址基本上使用的是网卡MAC地址,在一层工作的主要是集线器和交换机,集线器会将所有帧信号投放到各个端口,因此连接端口的主机会收到很多没有意义的数据帧,这将造成集线器和主机之间信道冲突剧烈,因此集线器一般情况下使用较少,而交换机具有MAC地址学习记忆功能,能够准确的将数据帧投放到指定端口,从而大大地提高了数据传输效率;而在L2层,数据只能在一个子网间进行交换,如果要跨子网传输数据,则需要借助L3层的路径规划功能,也就是路由器的工作原理;
***设现有如下网络拓扑图,ABCD四台主机属于10.0.0.0子网,***指向路由器1的10.0.0.1,EFGH四台主机属于10.0.1.0子网,***指向路由器2的10.0.1.1;
先看同一子网内通信情况,A向C发送数据,这种情况下都是ip指定的,***设所有主机,交换机和路由器都刚刚通电,没缓存任何MAC映射和路由表。A在向C发送数据之前,是知道C的ip地址,发现它俩在同一物理子网,于是A试图在物理子网内来寻找C,但是在物理子网内寻址是通过MAC地址的,A并不知道C的MAC地址,于是A发送了一个ARP广播包,ARP广播用的地址是ff:ff:ff:ff:ff:ff,包内容如下:
交换机收到ARP广播后,首先会学习到主机A是连接到1端口的,然后缓存起来,同时在缓存中查找C的MAC地址,没找到便将这个广播包从所有端口发出去(1端口除外),交换机2收到广播包后,也会在缓存中查找C的MAC地址,没找到同样进行转发,其中B,D主机收到广播包后发现和自己无关便丢弃,而C收到广播后便会进行回应,来告知自己的身份,内容格式如下:
这个对于参与的交换机也是个学习的过程,在过程中记忆了主机A和主机C的ip地址和mac地址,AC找到彼此后,便可以在同一子网内依靠mac地址进行相互通信,格式如下:
同样***设所有设备都刚刚通电,没有缓存任何信息,这时A向E发送数据,A是知道E的ip地址,发现属于同一网段,同样不知道E的mac地址,于是A同样发送ARP广播包,BCD没有响应,但是路由器1收到广播后,为了避免广播风暴,会把自己的mac地址告诉A,格式如下:
A等待超时后,会知道E不在当前物理子网内,于是会向路由器1发送数据包,路由器收到数据包后,发现没有缓存E的ip地址,于是路由器1开始寻找E的过程。相比较交换机的广播找人,路由器寻址的空间范围更大,很多情况下是整个internet网络,要跨很多网络运营商,因此L3层面路由器的路径寻址计算协议涉及很多,例如:RIP、OSPF、IS-IS、BGP、IGRP等协议。路由器计算路径时,是无法窥探整个互联网的,因此每台路由器都是通过路由算法找到下一跳的最优路径,这些最优路径汇集起来就是完整的寻址路径,换句话说,路由器的转发路径不是一台路由器选出来的,而是很多路由器共同选择出来的最优下一跳地址序列;在这里为了解释原理,***设路由器1直接找到了路由器2。
这样路由器1开始想路由器2发送数据包,路由器2便开始在自己的物理子网内寻找E,进过一次广播后,发现E在自己子网内,于是向前一跳,找到离自己最近的路由器1,反馈自己离E主机最近,最终经过“A-广播-路由器-路由器寻址-找到E主机所在子网”过程的A,便可以和E进行通信了。由于A和E之间经历了多个物理子网,因此需要经历多次L2的转发才能实现数据包的转达,在这个过程中,ip包外包的数据帧中的mac地址是不断变换的。在A-E-A的过程中,数据帧和IP包的地址经历了如下过程(***设A的通信端口是88,而E的是99):
去包:
回包:
数据包在路由1和2中的1,4端口中进行转发时,因为是在设备内部,因此可以直接转发,不用变换帧头,从而提高效率,另外如果A向其他子网的FGH发送数据时,过程基本上一样,只不过不会通过广播寻址,而是直接将数据包发送给路由器出口***。
参照了:
二层网络结构和三层网络结构的对比
在企业的网络结构选择中,有二层网络和三层网络结构两种选择。
在这里的二层、三层是按照逻辑拓扑结构进行的分类,并不是说ISO七层模型中的数据链路层和网络层,而是指核心层,汇聚层和接入层,这三层都部署的就是三层网络结构,二层网络结构没有汇聚层。
只有核心层和接入层的二层网络结构模式运行简便,交换机根据MAC地址表进行数据包的转发,有则转发,无则泛洪,即将数据包广播发送到所有端口,如果目的终端收到给出回应,那么交换机就可以将该MAC地址添加到地址表中,这是交换机对MAC地址进行建立的过程,但这样频繁的对未知的MAC目标的数据包进行广播,在大规模的网络架构中形成的网络风暴是非常庞大的,这也很大程度上限制了二层网络规模的扩大,因此二层网络的组网能力非常有限,所以一般只是用来搭建小局域网。
与二层网络结构不同的是,三层网络结构可以组建大型的网络。
核心层是整个网络的支撑脊梁和数据传输通道,重要性不言而喻,因此在整个三层网络结构中,核心层的设备要求是最高的,必须配备高性能的数据冗余转接设备和防止负载过剩的均衡负载的设备,以降低各核心层交换机所需承载的数据量。(网络的高速交换主干)
汇聚层是连接网络的核心层和各个接入的应用层,在两层之间承担“媒介传输”的作用。汇聚层应该具备以下功能:实施安全功能(划分VLAN和配置ACL)、工作组整体接入功能、虚拟网络过滤功能。因此,汇聚层设备应***用三层交换机。(提供基于策略的连接)
接入层的面向对象主要是终端客户,为终端客户提供接入功能。(将工作站接入网络)
二层网络仅仅通过MAC寻址即可实现通讯,但仅仅是同一个冲突域内;三层网络则需要通过IP路由实现跨网段的通讯,可以跨多个冲突域。
三层交换机在一定程度上可以替代路由器,但是应该清醒的认识到三层交换机出现最重要的目的是加快大型局域网内部的数据交换,所具备的路由功能也多是围绕这一目的而展开的,所以他的路由功能没有同一档次的专业路由器强,在安全、协议支持等方面还有许多欠缺,并不能完全取代路由器工作。
在实际应用过程中,典型的做法是:处于同一个局域网中的各个 子网 的互联以及局域网中VLAN间的 路由 ,用三层 交换机 来代替 路由器 ,而只有局域网与公网互联之间要实现跨地域的网络访问时,才通过专业路由器。
二层网络和三层网络有什么区别?2层不是mac么?咋也是网络?
你不懂术语就乱了分寸,做项目的人那是故弄玄虚,故作高深,
一般中等规模用二层交换机就可以了。
大型分布乱的才用到三层交换机,很贵。
普通的交换机就是二层交换机,只识别MAC地址,不识IP地址(由电脑负责转换),
所以叫二层交换机,不能路由;
三层交换机,思科牌的,支持VLAN,不但识别MAC地址,还能把MAC帧中的IP地址
识别出来,进行路由,功能强大复杂,价格贵,一只交换机就能划分N个
网段,还能N个三层交换机分布式多网段,称VLAN。
2层架构和3层架构的比较?
1、简单说client直接访问DBserver为两层结构。
client通过中间件等应用服务器访问DBserver为三层结构。
三层结构比两层结构安全。
2、可以这样理解:客户端程序访问服务器的结构叫两层结构。中间加一个事务逻辑处理封装的中间件作为沟通就是三层结构,这样可以均衡数据负载!
3、拷贝一些基础知识你看一下。(没有图片)
附:相关知识
现代社会的软件开发体系结构简单概括就是N层体系结构,这里的N大于等于1。换而言之就是:单机体系(N=1)、Client/Server结构体系(N=2)、多层体系结构(N2)。下面我们就对这几种体系结构进行简单的介绍和比较。
单机体系:这种软件适用于单机状态,一般情况下是针对某一种单一的应用,如字典软件、翻译软件等等。这种开发方式不适用于综合管理系统的开发。
C/S结构:c/s结构是在局域网上发展起来的,它具有数据集中管理的能力,在出现之初确实解决了很多计算机发展的难题,同时随着4GL语言的发展,用户的界面也比较丰富,在CLIENT端的事物处理能力也使整个系统的性能得到全面的提高,并使管理信息系统(MIS:Management Information System)得到快速的发展。其大概的图例见图1。
我们根据两层结构体系的概念来分解C/S结构的话,可以将他分为表现层(也叫表达层)和数据层。数据层提供数据存放的载体,而表现层则通过一定技术将数据层中数据取出,进行一定的分析并以某一种格式向用户进行显示。在两层体系结构中,表现层对数据库进行直接操作,且大部分的商业处理逻辑(Business Logic,数据之间的关系规则)也在表现层中实现.
图1:Client/Server 体系结构示例
三层体系结构:三层体系结构是N层体系结构的典型,所谓的三层体系结构就是将原来在两层体系结构中的商业逻辑部分从数据层和表现层中提炼出来,形成中间件服务器,所以三层就是:表现层、商业逻辑层(Business Logic)、数据层。在此之外,还有一种系统结构就是分布式系统,其结构系统图见图2。
图2:分布式系统的结构示意图
在分布式系统中,其介于客户端和数据端之间的仅仅是一个应用服务器,它管理客户端的软件,但不做性能调整,比如每一个客户端调用时均产生一个新的数据库连接,而不能够将连接保持形成一个连接缓冲池。虽然在分布式应用中已经结合了一些商业处理逻辑,但是并没有真正改变原来的C/S体系结构。
在三层体系结构中,表现层将主要提供与客户的交互功能,数据层提供系统中的所有的数据保存载体,而商业逻辑层将整个系统中的商业处理逻辑整和在一起,形成中间件,在三层中。中间件起了承前启后的作用,表现层将客户端的请求通过IDL调用中间件,中间件在将其转化成数据处理原则,并从数据库中获得相应的数据,返回给客户端的软件,转换成客户要求的方式显示。关于三层体系结构的示意图见图3。
图3:三层体系结构示意图
我们已经简单的介绍了C/S结构和三层体系结构,有关的优点已经昭然若揭,为了更好的让您了解两者的区别,我们将两者进行一些比较。
C/S结构的缺点:
缺乏有效的集权控制:在众多的C/S软件中我们不难看出,所有的构件不能够在一个地点(如一台机器)进行统一的管理,而不得不将他们分化在各个CLIENT的应用中,使得维护和安全保密均很困难。
缺乏安全性:在分散的计算机系统中,控制信息的访问安全是非常困难的,由于客户端经常需要对一些敏感的数据进行分析导致安全漏洞很容易发生。
客户端工作量重:当将一个应用中的所有的商业逻辑全部在各个客户端来实现的时候,仅仅是使用桌面电脑的客户端***将发生不堪负载的情况。
软件的重用性差:由于C/S结构下的应用软件一般均是根据操作系统进行定制,且开发工具也是有一定的限定,一旦需要改变某一个要素的话,很可能只能重做,例如原来用C语言来开发,现在需要转向PB进行开发,那么,原来的所有工作都需要重新来过。
随着应用的不断复杂,桌面电脑将需要不断的升级以适应系统的性能需求,甚至有时侯会完全超出桌面系统能够承受的限度。例如:诸如多线程和对称多重处理技术等先进操作系统的特性可能不能在标准桌面电脑系统中提供,不通过访问具有这些技术的服务器,客户端的桌面系统将可能永远不能获得这些新的技术的性能。
针对这些问题,三层体系结构给予了很好的解决方案。
在三层体系结构中,提供在客户端和服务器端进行应用功能的分割,系统通过应用将用户定义的界面系统从商业处理逻辑中分割出去。通过将商业处理逻辑集中在中间件服务器中,将能够减小客户端的工作量并使敏感数据访问控制变得简单。
在三层结构中,客户端将与服务器端的数据变化隔离,简单的说,商业处理逻辑不受客户端的用户界面的改变而影响。三层体系中有一个非常重要的特性就是系统具有良好的组件重用性,例如在PB中开发的组件,可以在VC中进行使用。其图例见图4。
两层架构与三层架构的区别,从优缺点角度说明?
三层在安全性、稳定性及大量并发控制上要强于两层的,它不会让客户端直接面对数据库,所有减少了由于客户端被破解而给数据库带来损失的风险,并且可以比较妥善的解决多用户并发带来的服务器拥挤,但是在客户端比较少的情况下,它访问数据的速度要慢于两层结构的,开发、维护难度要比两层的大不少,所以对于20客户端以下的应用,应该谨慎使用三层结构开发。
呵呵,网络游戏不可能是两层开发的方式的,那种多数据库服务器、多连接服务器是两层做不到的。如*** ,*** 的服务端有十多个程序在完成各项的工作。
二层网络和三层网络有什么区别?
二层与三层的本质区别在于是否可以配置多个int vlanif接口,可以则为三层交换机,只能配置一个int vlanif的通常称为网管型交换机,不能配置int vlanif的称为普通二层交换机。具体如下:
1、二层、三层是按照逻辑拓扑结构进行的分类,并不是说ISO七层模型中的数据链路层和网络层,而是指核心层,汇聚层和接入层,这三层都部署的就是三层网络结构,二层网络结构没有汇聚层。2、二层网络仅仅通过MAC寻址即可实现通讯,但仅仅是同一个冲突域内;三层网络需要通过IP路由实现跨网段的通讯,可以跨多个冲突域。
3、二层网络的组网能力非常有限,一般只是小局域网;三层网络则可以组大型的网络。
4、二层网络基本上是一个安全域,也就是说在同一个二层网络内,终端的安全性从网络上讲基本上是一样的,除非有其它特殊的安全措施;三层网络则可以划分出相对独立的多个安全域。
5、很多技术相对是在二层局域网中用得多,比如DHCP、Windows提供的共享连接等,如需在三层网络上使用,则需要考虑其它设备的支持(比如通过DHCP中继代理等)或通过其它的方式来实现。
6、在实际应用过程中,典型的做法是:处于同一个局域网中的各个子网的互联以及局域网中VLAN间的路由,用三层交换机来代替路由器,而只有局域网与公网互联之间要实现跨地域的网络访问时,才通过专业路由器。
三层网络架构和两层网络架构的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于网络二层架构和三层架构、三层网络架构和两层网络架构的信息别忘了在本站进行查找喔。